Precipitazione selettiva e pH

Il calcolo della solubilità di un sale poco solubile derivante da un acido debole non è dei più semplici ma la cosa si complica se si vuole conoscere la solubilità a un determinato pH.

Il problema è ulteriormente più difficile se si vuole operare una precipitazione selettiva variando il pH. Viene presentato un problema che si presenta ad elevato grado di difficoltà ma risolvibile facendo le opportune considerazioni.

Esercizio

Una soluzione acida contiene lo ione Fe2+ a concentrazione 0.055 M, lo ione Co2+ a concentrazione 0.015 M e H2S a concentrazione 0.100 M e il pH della soluzione viene aumentato con gradualità. Si determini il pH a cui si verifica la precipitazione di FeS, il pH a cui si verifica la precipitazione di CoS e il pH a cui avviene la migliore separazione dei due ioni

Kps (FeS) = 6.0 ∙ 10-19

Kps (CoS) = 5.0 ∙ 10-22

Ka1 (H2S) = 9.5 ∙ 10-8

Ka2 (H2S) = 1.0 ∙ 10-19

Poiché i due elettroliti hanno la stessa stechiometria è possibile confrontare i due prodotti di solubilità pertanto il solfuro di cobalto che è il meno solubile precipita per primo.

Calcoliamo il pH a cui si verifica la precipitazione di FeS

Gli equilibri da considerare sono:

FeS(s) ⇌ Fe2+(aq) + S2-(aq)

Kps = 6.0 ∙ 10-19 = [Fe2+][ S2-]

H2S ⇌ H+ + HS

HS⇌ H+ + S2-

Per l’equilibrio

H2S ⇌ 2 H+ + S2- il valore della costante di equilibrio è K = Ka1∙ Ka2 = 9.5 ∙ 10-8 ∙ 1.0 ∙ 10-19 = 9.5 ∙ 10-27 = [H+]2[S2-]/[H2S]

Sostituendo nell’espressione del prodotto di solubilità [Fe2+] si ha:

Kps = 6.0 ∙ 10-19 = (0.055) [S2-] si ha:

[S2-] = 1.09 ∙ 10-17 M

Consideriamo l’equilibrio H2S ⇌ 2 H+ + S2- di cui è nota la costante e la concentrazione dello ione solfuro. All’equilibrio [H2S] = 0.100-x

Sostituendo nell’espressione della costante di equilibrio si ha

K = 9.5 ∙ 10-27 = [H+]2[S2-]/[H2S] = (x)2(1.09 ∙ 10-17)/0.100-x

Trascurando la x sottrattiva al denominatore:

K = 9.5 ∙ 10-27 = (x)2(1.09 ∙ 10-17)/0.100

Da cui x2 = 8.72 ∙ 10-11

Escludendo la radice negativa x =[H+] =9.34 ∙ 10-6 M

Da cui pH = – log 9.34 ∙ 10-6 = 5.03

 

Calcoliamo il pH a cui si verifica la precipitazione di CoS in modo del tutto analogo a quanto fatto per FeS. Vengono quindi riportati solo i calcoli

Kps = 5.0 ∙ 10-22 = [Co2+][ S2-] = (0.015) [S2-]

Da cui [S2-] = 3.33 ∙ 10-20 M

K = 9.5 ∙ 10-27 = [H+]2[S2-]/[H2S] = (x)2(3.33 ∙ 10-20)/0.100-x

K = 9.5 ∙ 10-27 = [H+]2[S2-]/[H2S] = (x)2(3.33 ∙ 10-20)/0.100

Da cui x2 = 2.85 ∙ 10-8

Da cui x = [H+] = 1.69 ∙ 10-4 M

pH = – log 1.69 ∙ 10-4 = 3.77

 In conclusione aumentando il pH della soluzione iniziale a pH = 3.77 precipita CoS e successivamente a pH = 5.03 precipita FeS.

Il pH a cui avviene la migliore separazione dei due ioni è intermedio tra i due ed è ragionevole supporre che esso sia pari alla loro semisomma

 

 

Author: Chimicamo

Share This Post On