Blog

Il pH delle soluzioni saline e l’idrolisi di un sale

  |   Chimica, Stechiometria

Le soluzioni saline possono avere pH neutro, pH acido e pH basico a seconda dell’idrolisi del sale

E’ possibile prevedere il pH di una soluzione salina, sia ottenere il valore del pH.

Consideriamo infatti una soluzione di NaCl : essa ha pH = 7.00. Infatti NaCl è un sale derivante dall’acido forte HCl e dalla base forte NaOH. Quando viene sciolto in acqua esso si dissocia completamente il ioni essendo un elettrolita forte:
NaCl →Na+ + ClLo ione Cl è una base molto debole essendo coniugata dell’acido forte HCl per cui non si verifica un equilibrio del tipo Cl+ H3O+ = HCl + H2O. Analogamente essendo NaOH una base forte non si verifica un equilibrio del tipo

Na+ + OH = NaOH.

Tali equilibri , infatti, se si verificassero andrebbero a perturbare l’autoionizzazione dell’acqua sottraendo rispettivamente ioni H3O+ e OH.

Rimane quindi verificata la condizione [H3O+] = [OH]

E quindi le soluzioni di un sale derivante da acido forte e base forte hanno pH = 7.00.

Idrolisi

Consideriamo, adesso, una soluzione di cloruro di ammonio NH4Cl e analizziamo gli equilibri che si generano in soluzione. Il cloruro di ammonio è un elettrolita forte che si dissocia completamente nei suoi ioni :
NH4Cl→ NH4+ + Cl

Mentre gli ioni Cl non perturbano l’equilibrio dell’acqua gli ioni NH4+, acido coniugato della base debole NH3, interagiscono con gli ioni OH derivanti dalla dissociazione dell’acqua secondo l’equilibrio:
NH4+ + OH ⇄ NH3 + H2O

Sottraendo ioni OH risulta [H3O+]›[OH] : pertanto il pH di una soluzione salina derivante da un acido forte e da una base debole risulterà minore di 7.00

Consideriamo infine una soluzione di CH3COONa  e analizziamo gli equilibri che si generano in soluzione. L’acetato di sodio è un elettrolita forte che si dissocia totalmente nei suoi ioni :
CH3COONa →CH3COO + Na+

Mentre la presenza degli ioni Na+ non perturbano l’equilibrio dell’acqua, lo ione acetato , base forte, coniugata dell’acido debole CH3COOH sottrae ioni H3O+ secondo la reazione

CH3COO+ H3O+ ⇄ CH3COOH + H2O.

Sottraendo ioni H3O+ risulta [H3O+]<[OH] : pertanto il pH di una soluzione salina derivante da acido debole e base forte avrà pH > 7.00

Esercizi

1)       Calcolare il pH di una soluzione 1.00 M di acetato di sodio sapendo che la Ka dell’acido acetico vale 1.8 · 10-5.

La reazione di idrolisi dello ione acetato è:

CH3COO + H2O ⇄ CH3COOH + OH

Costruiamo una I.C.E. chart

  

CH3COO H2O CH3COOH OH
Stato iniziale 1.00 // //
Variazione -x +x +x
Equilibrio 1.00-x x x

 

La costante di questo equilibrio anche chiamata costante di idrolisi Kh o Kb vale :
Kh = [CH3COOH][OH]/ [CH3COO]

Si può dimostrare che il valore numerico di Kh è pari a Kw/Ka .

Infatti, moltiplicando numeratore e denominatore per [H3O+] si ha

Kh = [CH3COOH][OH][H3O+] / [CH3COO][H3O+]

Essendo [H3O+][OH]= Kw si ha :

Kh = [CH3COOH] Kw/[CH3COO][H3O+] = Kw/Ka = 1.00 · 10-14/ 1.8 · 10-5= 5.6 · 10-10

Sostituendo i dati in tabella si ha:

5.6 · 10-10= (x)(x)/ 1.00-x

Risolvendo rispetto a x si ha x = [OH] = 2.4 · 10-5 M

pOH = – log 2.4 x 10-5 = 4.6

pH = 14 – pOH = 14 – 4.6 = 9.4

2)     Calcolare il pH di una soluzione 1.00 M di NH4Cl sapendo che Kb di NH3 = 1.8 ∙10-5

la reazione di idrolisi dello ione ammonio è :

NH4+ + H2O ⇄ NH3 + H3O+

 Costruiamo una I.C.E. chart:

NH4+ H2O

NH3 H3O+
Stato iniziale 1.00 // //
Variazione -x +x +x
Equilibrio 1.00-x x x

 

La costante di questo equilibrio chiamata anche costante di idrolisi o Kvale

Kh = [NH3][H3O+]/[NH4+]

Si può dimostrare che il valore numerico di Kh è pari a Kw/Kb . Infatti, moltiplicando numeratore e denominatore per [OH] si ha :

Kh = [NH3][H3O+][OH]/ [NH4+][OH] = Kw/Kb = 1.00 · 10-14/ 1.8 · 10-5= 5.6 · 10-10

Sostituendo i valori ricavati in tabella si ha :

Kh = 5.6 · 10-10= (x)(x)/ 1.00-x

x = [H3O+] = 2.35 ∙10-5 M

pH = – log 2.35 · 10-5 = 4.6

3)     Calcolare quale concentrazione debba avere una soluzione di NH4Cl affinché il suo pH sia pari a 4.7 sapendo che Kb di NH3 = 1.8 ∙10-5

Affinché il pH sia 4.7 si deve avere [H3O+] = 10– 4.7= 2.0 ∙10-5 M

Poiché all’equilibrio [H3O+] = [NH3] si ha :

Kh = 5.6 · 10-10= (2.0 ∙10-5)(2.0 ∙10-5)/X

X = [NH4+] all’equilibrio = 0.71 M

La concentrazione iniziale di cloruro di ammonio sarà quindi pari a

0.71 – 2.0 · 10-5 = 0.71 M