Chimica nucleare: e le reazioni che cambiano la natura del nucleo

Nuclide è un elemento di cui si conosce il numero atomico Z , il numero di massa A e quindi anche il numero di protoni ( A-Z). Isotopi sono due nuclidi di uno stesso elemento aventi lo stesso numero atomico, ma diverso numero di massa. Un nucleo è tanto più stabile quanto più elevata è la sua energia nucleare di legame. Per calcolare tale energia si può considerare il difetto di massa del nuclide ovvero la differenza tra la massa ottenuta sommando i nucleoni e la massa nucleare calcolata sperimentalmente. Ad esempio il nucleo dell’elemento elio, costituito da 2 protoni e da 2 neutroni dovrebbe avere massa pari a ( 2 x 1.00728) + ( 2 x 1.00867) = 4.03190 u mentre ha massa pari a 4.00150 u.

In questo caso il difetto di massa Δm = 0.03040 u

Tenendo presente la relazione di Einstein E = mc2 appare evidente che questa massa si è  trasformata in energia nel momento della formazione del nucleo atomico e rappresenta quindi l’energia necessaria per separare i suoi nucleoni. Infatti

ΔE = Δmc2 o anche Δm = ΔE/mc2

Il decadimento radioattivo avviene con emissione di radiazioni che vengono così classificate :

  • I raggi alfa che sono formati da particelle positive con carica uguale a due unità atomiche e massa pari a quattro unità atomiche. Tali radiazioni si rappresentano con il simbolo 42 α
  • I raggi β che sono costituiti da elettroni negativi e si rappresentano con il simbolo 0-1 β
  • I raggi β+ che sono costituiti da elettroni positivi (positroni) e si rappresentano con il simbolo 0+1 β+
  • I raggi  gamma che sono costituiti da radiazioni elettromagnetiche.

La stabilità di un nucleo, correlata alla spontaneità di emettere radiazioni, è dipendente dal rapporto numero di neutroni/ numero di protoni. Se tale rapporto vale circa 1 il nucleo è stabile.

Se tale rapporto è diverso da 1 si possono avere diversi tipi di decadimento a seconda dei casi .

–         Il decadimento radioattivo α di tipo è caratteristico di nuclidi pesanti aventi numero atomico maggiore di 82 e numero di massa maggiore di 200. Con l’emissione di tali particelle , il nuclide si trasforma in un’altra specie chimica : il nucleo perde 2 unità di massa e due unità di carica : l’elemento che la emette si trova spostato di due posti a sinistra nella tavola periodica. Ad esempio

23892 U = → 23490 Th + 42 He

  • Il decadimento radioattivo beta-meno avviene quando il nucleo contiene troppi neutroni rispetto ai protoni e pertanto diventa più stabile se uno dei suoi neutroni decade a protone:

10 n → 11 p + + β+ v ̅e( antineutrino)

In tal caso il numero di massa rimane costante ma aumenta di una unità il numero atomico Z : l’elemento ottenuto si trova a destra dell’elemento che lo ha generato. Ad esempio :

13755 Cs → 13756 Ba + e + v ̅e

  • Il decadimento radioattivo beta-più si verifica negli isotopi leggeri di elementi con basso numero atomico con la trasformazione di un protone in neutrone. In tale decadimento il numero di massa rimane costante e il numero atomico diminuisce di una unità e pertanto l’elemento si troverà a sinistra dell’elemento che lo ha generato . Ad esempio :

137 N → 136 C + β+ + ve ( neutrino)

  • Si può infine osservare la cattura di un elettrone extranucleare . Tale elettrone si unisce a un protone per dare un neutrone. Il nuclide che si ottiene presenta un numero di massa uguale a quello dell’elemento di partenza, ma con numero atomico inferiore di un’unità . Ad esempio:

8237 Rb + 1 e  → 8236 Kr

Esercizi

1)       Completare la seguente reazione nucleare :

23892 U + 147 N → 24799 Es + ….

Strategia : si nota che la somma tra i numeri atomici del primo membro ( 92+7=99) è uguale al numero atomico dell’elemento che si ottiene dopo la reazione ; pertanto durante la reazione vengono prodotti neutroni , in quanto hanno carica zero e, poiché la differenza dei numeri di massa è uguale a 5  la reazione si completa aggiungendo a destra 5 10 n.

2)     Completare la seguente reazione nucleare :

105 B + 42 α → 11 p

Poiché il numero di protoni iniziali è pari a 5 + 2 =7 e viene emesso un protone l’elemento che si ottiene dovrà contenere 7-1 = 6 protoni quindi l’elemento che si ottiene è l’azoto che avrà numero di massa pari a 10 + 4 -1 = 13: 137 N

3)     Determinare l’energia svolta durante l’esplosione di 1.00 Kg di sostanza se lo 0.30% di materia si trasforma in energia.

0.1  Kg = 1000 g

Δm = 1000 x 0.30/100 = 3.00 g

       ΔE = Δm x c2 = 3.00 ( 3.00 x 1010)2 = 2.70 x 1021  erg

 

 

 

Avatar

Author: Chimicamo

Share This Post On