Interpretazione statistica dell’entropia

Le varie formulazioni del secondo principio della termodinamica esprimono ciò che accade ma non perché accade. Alle domande sul perché il calore si trasferisce dal corpo più caldo a quello più freddo o perché l’universo diventa sempre più disordinato o sulla motivazione per la quale diventi sempre meno disponibile a compiere lavoro la risposta è che il disordine è molto più probabile dell’ordine. L’interpretazione statistica costituisce quindi un metodo per comprendere al meglio molti fenomeni.

Le possibilità di testa o di croce correlate al lancio di 5 monete sono:

Testa

Croce

5

0

4

1

3

2

2

3

1

4

0

5

Questi sono quelli che vengono detti macrostati. Un macrostato è una proprietà complessiva di un sistema: esso non specifica, nella fattispecie, l’ordine con il quale si presenta testa o croce o quali monete abbiano dato tale risultato. Un sistema di cinque monete ha sei possibili macrostati. Si può poi considerare l’ordine con cui si presenta l’evento testa o quello croce. Ogni sequenza è detta microstato che costituisce una descrizione dettagliata di ogni elemento del sistema

 

Microstati

Numero di microstati
5 teste, 0 croci TTTTT 1
4 teste, 1 croce TTTTC; TTTCT; TTCTT; TCTTT; CTTTT 5
3 teste, 2 croci TCTCT; CTCTT; TCTTC; CTTCT; CTTTC; TCTCT; CTCTT; TCTTC; CTTCT; CTTTC 10
2 teste, 3 croci CCCTT, CCTTC, CTTCC, TTCCC; CCTCT; CTCTC, TCTCC; CTCCT; TCCTC; TCCCT 10
1 testa, 4 croci CCCCT, CCCTC, CCTCC, CTCCC, TCCCC 5
0 teste, 5 croci CCCCC 1
  totale 32

I macrostati corrispondenti a 3 teste e 2 croci o a 2 teste e 5 croci sono 10 volte più probabili rispetto a quelli corrispondenti a 5 teste o 5 croci assumendo che ciascun microstato abbia la stessa probabilità. Si noti che gli eventi più ordinati corrispondono a 5 teste o 5 croci che complessivamente costituiscono 2 su 32 possibilità. Gli eventi che comportano un maggior disordine ( 3 croci e 2 teste o 3 teste e 2 croci) costituiscono 20 su 32 possibilità.

Se si parte da uno stato ordinato ( 5 teste o 5 croci) e lanciamo le monete è molto probabile che si ottenga uno stato meno ordinato in quanto vi sono 30 su 32 possibilità di avere un ordine minore il che evidenzia che la tendenza è quella di andare da uno stato di ordine a uno stato di disordine.

I risultati visti diventano ancora più evidenti se si lavora su numeri più grandi: consideriamo infatti il lancio di 100 monete invece che 5; le disposizioni più ordinate sono 100 teste o 100 croci mentre quello meno ordinato è 50 teste e 50 croci. Vi è solo 1 microstato, infatti, per ottenere 100 teste ovvero 1 su 100. Vi sono 100 microstati per ottenere la diposizione di 1 testa e 99 croci o 1 croce e 99 teste mentre vi sono 1.0 x 1029 modi per ottenere 50 croci e 50 teste che costituisce la disposizione meno ordinata.  In tabella vengono riportati i macrostati e il numero di microstati ad essi correlati per alcune delle disposizioni possibili.

Macrostati Numero di microstati
Testa Croce (W)
100 0 1
99 1 1.0 ∙ 102
95 5 7.5 ∙ 107
90 10 1.7 ∙ 1013
75 25 2.4 ∙ 1023
60 40 1.4 ∙ 1028
55 45 6.1 ∙ 1028
51 49 9.9 ∙ 1028
50 50 1.0 ∙ 1029
49 51 9.9 ∙ 1028
45 55 6.1 ∙ 1028
40 60 1.4 ∙ 1028
25 75 2.4 ∙ 1023
10 90 1.7 ∙ 1013
1 99 1.0 ∙ 102
0 100 1
    Totale 1.27 ∙ 1030

Il numero totale di microstati, ovvero il numero totale con cui 100 monete possono essere lanciate, è 1.27 x 1030. Supponendo che avvenga un lancio al secondo ci si può aspettare che la possibilità che si abbiano 100 teste o 100 croci avvenga ogni 2 ∙ 1022 anni. Per i grandi numeri appare sempre più evidente che lo stato di disordine è quello più probabile.

Si immagini ora di applicare tale metodologia a una specie gassosa. I macrostati del gas corrispondono alle sue proprietà macroscopiche come pressione, volume e temperatura; i suoi microstati corrispondono alla descrizione della velocità e della posizione di ogni atomo: 1.0 cm3 di gas a 0 °C e alla pressione di 1 atm contengono 2.7 ∙ 1019 atomi. Così ogni macrostato ha un numero altissimo di miscrostati ovvero un numero altissimo di modi con i quali un atomo può trovarsi pur trovandosi nelle stesse condizioni di temperatura e pressione. Gli atomi si troveranno nello spazio secondo la distribuzione di Maxwell-Boltzmann e si muoveranno in modo casuale in una condizione di massimo disordine. La possibilità che tutti gli atomi si trovino confinati in un angolo e con velocità uguali è minima:

gas

al punto da poter essere considerata impossibile. La condizione di disordine corrisponde ad un’alta entropia mentre una condizione ordinata a una bassa entropia. Se gli atomi, inizialmente confinati in un angolo vengono lasciati liberi di muoversi essi ben presto andranno a occupare lo spazio disponibile senza mai riornare allo stato originario. Boltzmann provò che l’entropia di un sistema in un dato stato può essere scritta come:

S = k ln W

Dove k = 1.38 ∙ 10-23 J/K ed è detta costante di Boltzmann e ln W è il logaritmo naturale dei numeri di microstati che corrispondono a un determinato macrostato. W è proporzionale alla probabilità che si manifesti quel determinato macrostato. L’entropia risulta così relazionata alla probabilità di uno stato; il secondo principio della termodinamica può quindi essere espresso come un aumento spontaneo di entropia in ogni processo.

Avatar

Author: Chimicamo

Share This Post On